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Advisor’s Note

When I received the invitation to serve as a research advisor 
for PLJ’s research dive, I was very interested in the topic: 
image mining for disaster management. Wow! This topic is 
really cool and has many interesting challenges. Extracting 
information from a large number of images is one of my 
interests, and this event was my entry point to learn about 
its application in disaster management, collaborating with 
a wonderful research team. During the three days of the 
research dive, we learned together how image processing, 
data mining and remote sensing technologies can be used to 

extract useful information from image data obtained from so-
cial media to support disaster management. Many interesting 
ideas were proposed, discussed, implemented and evaluated 
from early morning to late at night in a very positive academ-
ic atmosphere. I really enjoyed learning many new things and 
working together with the wonderful teams: PLJ staff and 
scientists from universities and institutions across Indonesia. 
This is a good start for further collaboration in the future and 
I believe that we will be able to contribute significantly to 
disaster management in Indonesia.

In disaster management activities, collaborative efforts are 
often under time pressure and available data can be complex 
and often conflicting. Access to and use of geospatial big 
data from satellite sensors and human sensors is necessary 
to help volunteers and decision-makers provide timely and 
better-coordinated disaster preparedness and response. The 
use of social media images for haze mitigation, pre- and 
post-volcanic eruption images for change detection and 
GIS modeling from drone imaging are all interesting topics. 
From the event we learned that the utilisation of techniques 
in visual analytics and image mining of geo-related data in 
disaster management is challenging but has potential bene-
fits for society. The Research Dive initiative is an excellent 
breakthrough connecting technology and needs in human-
itarian affairs. The cases and corresponding tasks during 
the event were perfect examples of many disaster aftermath 

scenarios, especially in Indonesia. Here, decisions must be 
made during a period when there is a lot of data (including 
big data) but it can often be conflicting. In many cases, it 
can go from bad to worse when there are no detailed maps 
and digital elevation models are unavailable. In some areas, 
there is no internet connection. Thus, the challenges that 
were given to the participants are valid.
I am excited to see how the groups accomplished the tasks 
in interesting ways. Further exploration on the topics of 
visual analytics and geospatial image analysis is needed to 
improve the quality of the results. In summary, the Research 
Dive event was a cool initiative. I was fortunate to meet 
great and enthusiastic colleagues and participants who are 
fully committed to finish their group task successfully. This 
event can be a good model to nurture today’s technology to 
achieve the best solutions for our geo-related problems.

Dr. Eng. Anto Satriyo Nugroho 
Advisor for Image Processing

Anto Satriyo Nugroho is a computer scientist working for the Center for Information and Communication 
Technology, Agency for Assessment and Application of Technology, Republic of Indonesia. He received his B.Eng., 
M.Eng., and Dr.Eng. degrees in Electrical and Computer Engineering from Nagoya Institute of Technology of 
Japan, in 1995, 2000 and 2003 respectively. His research interests include Pattern Recognition & Image Processing 
with applied fields of interest in biometrics & computer aided diagnosis for malaria status identification from blood 
smears microphotograph. He joined the IT team of the General Elections Commission (KPU) during the Indonesian 
legislative election in 2009, and the Indonesian e-ID National Program “e-KTP” in 2012. In 2015, he served the 
Indonesian National Police as a researcher on scientific crime investigation related topics. Dr. Nugroho is a member 
of IEEE and vice president of the Indonesian Society for Soft Computing. He has received several awards, including 
a first prize award in the Meteorological Forecasting Contest 1999, conducted by the Neurocomputing Technical 
Group of The Institute of Electronics, Information and Communication Engineers, Japan, and the Satya Lencana 
Karya Satya in 2010 from the President of the Republic of Indonesia, for 20 years of devotion as a public official.

Trias Aditya K. M., ST, M.Sc, Ph.D 
Advisor for Geographic Information System

Trias Aditya is Associate Professor in Geomatics Engineering at the Department of Geodetic 
Engineering, UGM. He received his MSc and PhD in Geo-informatics from ITC/Utrecht 
University on the topics of Geospatial Web Services for his MSc in 2003 and Atlas Metaphor 
for Geospatial Data Infrastructure for his doctoral study in 2007. He has published cartography 
and GIS related papers in journals and conferences as well as project reports on the topics of: 
participatory mapping, collaborative mapping, online cartography and cadastre.

Initiating Collaboration to Enhance Indonesia’s Disaster Management

Nurturing Technology for Geo-related Problems



In my opinion, the event was great and very useful for di-
saster mitigation. Nowadays, we have entered an era where 
the internet is a powerful tool for accessing large amounts 
information. In order to get relevant, credible, and up-to-
date information to support disaster mitigation, we need an 
effective sorting tool. I believe that the Research Dive could 
contribute to this aim, associated with the BNPB system, 
particularly to support the Data and Information team. In 
the past we have used drones to collect data on the condi-
tion of the land, but have not been able to effectively survey 

the area due to weather conditions. My team was looking 
for models of settlement damage and classification of dam-
age zones from images, in order to better manage a disaster.
Through the event I was also able to share current disaster 
management practice and the need to understand the risks 
and the near real-time impacts of haze, volcanic eruptions, 
floods and landslides. It is inevitable that the potential of 
real-time monitoring could support target programmes 
during implementation and improve decision-making 
processes.

When I first engaged in discussions on the Research 
Dive event “Image Mining for Disaster Management”, 
I had some mixed feelings. As a practitioner working 
in the humanitarian field for quite some time, my way 
of thinking and working is very practical and not as 
systematic as in research work. But during the prepa-
rations and discussions with the PLJ team, I must say 
that I was impressed and also appreciated the way they 
translated my practical way of thinking into something 

that very much can be included in research-based 
material.
I enjoyed the entire process, from the preparation to the 
actual event, and was so excited to see that the results 
turned out better than we expected. I would like to see 
more research and collaboration between humanitarian 
workers and educational practitioners and researchers. I 
hope to see follow-up actions and deeper research on the 
results.

Dr. Agus Wibowo
Domain Expert for Disaster Management

Dr. Agus Wibowo is the Head of the Information Division at the National Disaster 
Management Authority (BNPB) and is responsible for managing ICT infrastructure for 
Disaster Management. He was previously the Head of the Data Division where he was 
responsible for statistical and geospatial data collection, processing, modeling and visualization 
which aims to develop a statistical and geospatial database and information system for 
disaster management. Prior to joining BNPB, he worked at the Agency for the Assessment and 
Application of Technology as Remote Sensing and GIS researcher. He received his MSc from 
ITC Faculty of Geo-Information Science and Earth Observation, University of Twente and 
Wageningen Agricultural University in Enschede and Wageningen, the Netherland in 1997. In 
2011, he obtained his doctorate in Geo-information, at the Faculty of Civil Engineering and 
Planning, Surabaya Institute of Technology, in Surabaya, Indonesia.

Faizal Thamrin
Domain Expert for Disaster Management

Faizal Thamrin is the Information Management Officer at the UN-OCHA Indonesia office. He 
serves as the UN focal point for data and information coordination during emergency response. 
His office aims to better integrate humanitarian work with disaster recovery, sustainable 
development and cross-cutting issues as well as improve the speed and accuracy of information 
delivered, which creates a shared frame of reference that enables decision-makers to co-ordinate 
and plan response programming based on best available knowledge of humanitarian needs and 
a clear understanding of each organization’s capacity. Mr. Thamrin has been working in the 
information management field for over 10 years. He has responded to different major sudden 
onset emergencies such as the 2006 Java earthquake, 2009 Sumatra earthquake, 2010 Pakistan 
floods, 2013-14 Typhoon Haiyan and many small to medium-scale disasters in Indonesia.
Mr. Thamrin wishes to work together with passionate collaborative partners with their new 
ideas and innovation to help strengthen the humanitarian community in Indonesia.
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Executive Summary 

Indonesia is one of the most disaster-prone countries in the world. In recent years, both natural and manmade disasters, 
including haze from forest fires, volcanic eruptions, floods and landslides, have resulted in deaths, destruction of land 
areas, environmental impacts, and setbacks to the economy. Faced with these risks, the Government of Indonesia is 
continually challenged to improve its disaster management practices and post-crisis responsiveness. 
 
Digital data sources and real-time analysis techniques have the potential to be an integral part of effective disaster 
management planning and implementation. Among these techniques, the use of image-based data can further enhance 
knowledge discovery related to this issue. When mined and analysed effectively, imagery data sourced from social 
media, satellite imagery, and Unmanned Aerial Vehicles (UAVs) can capture valuable ground-level visual insights. This 
data can be used to inform disaster-related decision-making and improve response efforts.  
  
Using 5,400 images related to haze collected from social media, gigabytes of time-series satellite imagery capturing an 
active volcano pre- and post-eruption from the National Institute of Aeronautics and Space Indonesia (LAPAN) and 
Google Earth, as well as UAV images of the recent landslides in Garut, West Java, Pulse Lab Jakarta recently invited 
image mining and Geographic Information System (GIS) enthusiasts to dive into this data.  
 
On 13 - 16 November 2016, Pulse Lab Jakarta organized a Research Dive on Image Mining for Disaster Management, 
hosting 16 researchers from 14 universities across Indonesia. The participants worked in teams to develop analytical 
tools and generate research insights in four areas. During the two research days, researchers explored and analysed the 
data, guided by image processing and GIS senior researchers as advisors, and representatives from UN OCHA and the 
National Disaster Management Agency (BNPB) as domain experts on disaster management. The event served as an 
opportunity for the selected researchers to share their expertise as well as forge networks with decision-makers. 
  
After completing the task during the Research Dive, the four groups submitted extended abstracts, which are presented in 
this technical report. The first group elaborates on automatic description generation from images related to the haze crisis 
using deep learning. The second group brings methods to infer the level of visibility from hazy images by applying 
single-image and learning-based approaches. The third group measures the impacts of volcanic eruption by using spatial 
data analysis and image processing approaches for satellite imagery data. The fourth group explores the combination of 
inundation modeling and image mining to portray the relationship between vulnerability and flood inundation. 
  
Pulse Lab Jakarta is grateful for the cooperation of UN OCHA, National Disaster Management Agency (BNPB), Agency 
for the Assessment and Application of Technology (BPPT), Airlangga University, Bina Nusantara University, Bogor 
Institute of Agriculture, Gajah Mada University, Hasanuddin University, Khairun University, Lampung University, Sam 
Ratulangi University, Sebelas Maret University, Tarumanegara University, Telkom University, Trunojoyo University, 
Udayana University, University of Indonesia. Pulse Lab Jakarta is also grateful for the generous support of the 
Department of Foreign Affairs and Trade of the Government of Australia, which enabled this research collaboration and 
many of the Lab’s other activities to advance data innovation in development practice and humanitarian action. 

   
  

 
January 2017  

Pulse Lab Jakarta 



 v 

Research Dive  
 
 
 
Advisors 
 
Dr. Eng. Anto Satriyo Nugroho  Badan Pengkajian dan Penerapan Teknologi 
Trias Aditya K. M., ST, M.Sc, Ph.D  Gajah Mada University 
Dr. Ir. Agus Wibowo, M.Sc  Badan Nasional Penanggulangan Bencana 
Faizal Thamrin  United Nations Office for the Coordination of 

Humanitarian Affairs 
 
Researchers 
 
Group 1 – Description of Images Related to Haze Crisis in Indonesia Using Deep Learning  
 
Ema Rachmawati  Telkom University 
Indah Agustien Siradjuddin   Trunojoyo University 
Muhammad Dwisnanto Putro  Sam Ratulangi University 
Vina Ayumi  University of Indonesia 
Ni Luh Putu Satyaning Paramita  Pulse Lab Jakarta 
 
 
Group 2 – Inferring the Level of Visibility from Hazy Images 
 
Alexander A S Gunawan  Bina Nusantara University 
Heri Prasetyo  Sebelas Maret University 
Indah Werdiningsih   Airlangga University 
Janson Hendryli  Tarumanegara University 
Muhammad Rheza  Pulse Lab Jakarta 
 
 
Group 3 – Quantifying The Impact of a Volcano Eruption 
 
Dina Chahyati  University of Indonesia 
I Dewa Nyoman Nurweda Putra  Udayana University 
I Gede Boy Darmawan  Lampung University 
Iis Hamsir Ayub Wahab  Khairun University 
Imaduddin Amin  Pulse Lab Jakarta 
 
 
Group 4 – Physical Vulnerability Modeling Based On Flood Inundation Model and Image 
Mining 
 
Edy Irwansyah  Bina Nusantara University 
Guruh Samodra  Gajah Mada University 
Hendra Pachri  Hasanuddin University 
Maulana Ibrahim Rau  Bogor Agricultural University 
Muhammad Subair  Pulse Lab Jakarta 



	 vi 

Table of Contents 

Advisor’s Note  .......................................................................................................................... ii 

Executive Summary  .................................................................................................................. iv 

Advisor and Participant List  ...................................................................................................... v 

Table of Contents  ...................................................................................................................... vi 

Research Dive II: Image Mining for Disaster Management  ...................................................... 1 

Description of Images Related to Haze Crisis in Indonesia Using Deep Learning ……. .......... 4 

Inferring the Level of Visibility from Hazy Images ................................................................. 8 

Quantifying the Impact of a Volcano Eruption  ........................................................................ 13 

Physical Vulnerability Modeling Based on Flood Inundation Model and Image Mining  ....... 19 



 1 

Research Dive II: Image Mining for Disasters 
Management 

 
 

Imaduddin Amin 
Pulse Lab Jakarta 
Jakarta, Indonesia 

imaduddin.amin@un.or.id 
 

Faizal Thamrin 
United Nations Office for the Coordination of 

Humanitarian Affairs 
Jakarta, Indonesia 
thamrinf@un.org

ABSTRACT 
Indonesia is one of the most disaster-prone countries in the 
world. Recent events include haze from forest fires, volcanic 
eruptions, floods and landslides. During the Research Dive, 16 
academics were invited to work together on imagery data 
sourced from social media, satellite imagery, and unmanned 
aerial vehicles (UAVs), to enhance knowledge discovery 
related to haze, volcanic eruption, floods and landslides. In 
particular, the task was divided into four tasks; (a) to generate 
automatic descriptions about the situation during the haze 
event, (b) to infer the visibility distance during the haze event, 
(c) to quantify the impact of volcanic eruption, and (d) to 
create a risk model and assess hazards related to floods and 
landslides. In order to support participants, Pulse Lab Jakarta, 
the National Institute of Aeronautics and Space Indonesia 
(LAPAN), and the National Board for Disaster Management 
(BNPB) provided imagery datasets. 
 

1. INTRODUCTION 
Disasters in Indonesia can be classified into three 

categories. Firstly, natural disasters such as volcanic 
eruptions, tsunamis, earthquakes and other nature-caused 
disasters. Secondly, non-natural disasters such as forest fires 
and disease outbreaks. Lastly, social disasters including 
terrorism and conflict. 

According to BNPB, the number of disasters in Indonesia 
is likely to increase every year. In 2015, there were 1,677 
disasters recorded, and up to November 2016 there were 1,985 
events identified. The top five disaster types include volcanic 
eruptions, forest fires, floods and landslides. 

Indonesia has the most active volcanoes in the world. 75 
out of 500 districts in Indonesia are in volcanic risk zones. 
Approximately 3.85 million people live in these risky areas. 

In addition, 274 out of 500 districts in Indonesia are 
classified as medium-high risk for landslide disasters. Unlike 
the volcanic eruptions that follow the ring of fire  (crossing 
from Sumatra, Java and the southern part of Indonesia), the 
landslide risk is scattered across all five main islands in 
Indonesia and may affect more than 40 million people. 

Lastly, forest fires are the largest man-made disaster that 
happens nearly every year. According to a World Bank report, 
between June and October 2015, around 100,000 man-made 
forest fires destroyed about 2.6 million hectares of land and 
caused toxic haze to spread to other parts of Southeast Asia1. 
                                                
1 World Bank. Indonesia economic quarterly: Reforming amid uncertainty; 
December 2015. Available: 
http://pubdocs.worldbank.org/pubdocs/publicdoc/2015/12/844171450085661051/IEQ
-DEC-2015- ENG.pdf. 

Considering the large impact it caused, the event was classified as 
a regional disaster. 

In November 2016, Pulse Lab Jakarta organized a Research 
Dive, hosting 16 researchers in image processing and Geographic 
Information System (GIS), to mine and analyse imagery data 
sourced from social media, satellite imagery, and UAVs related 
to haze, volcanic eruption, floods and landslides. The objective 
was to gather valuable information from this data to help 
authorities improve decision-making and disaster response 
efforts.  

Researchers were given access to 5,400 images related to 
haze collected from social media, gigabytes of time-series 
satellite imagery capturing Mount Merapi volcano pre- and post-
eruption from LAPAN and Google Earth, and UAV images of the 
recent landslides in Garut, West Java. The participants were 
divided into four groups with different tasks; (a) to develop 
methods for automatic description generation from images related 
to the haze crisis, (b) to infer the level of visibility from hazy 
images, c) to quantify the impact of volcanic eruption using time-
series satellite imagery, and (d) to model risk and assess hazards 
related to floods and landslides. 
 

2. DATASETS 
2.1. Social Media Data 

Pulse Lab Jakarta collected the images related to the haze 
situation from social media data sources in Haze Gazer 
(hazegazer.org). To collect these images, we used a set of 
keywords related to haze such as kabut asap (haze), masker 
(mask) and popular hashtags used during the haze situation such 
as: #melawanasap (fighting haze), #kabutasap (haze), and 
#saveriau. This set of keywords is called the taxonomy. 

After sending the taxonomy to the application program 
interface (API) stream, a set of social media messages was 
returned by the data firehouse. However, not all of the messages 
were related to the haze; sometimes they contained irrelevant 
information such as advertising or messages from fake or bot 
accounts. Thus, we used text processing to filter out non-related 
haze images. 

For the Research Dive, about 5,400 images were chosen 
randomly from our data collection and were shared with the 
participants. This included metadata such as the spatial 
information (latitude, longitude) and temporal information 
(timestamp) of each image. Out of 5,400 images, we also 
manually tagged 1,000 images as haze situation pictures and haze 
context pictures. A picture was tagged as haze situation when it 
showed the haze conditions such as a gray sky, hazy images and 
others. Haze context pictures related to the haze but did not 
necessarily show the haze situation, such as images of people 
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wearing masks, a campaign about the haze, and others. 

 

Figure 1. Images captured from social media, (a) 
Irrelevant image (non-haze image) and (b) Relevant image 
 

2.2. Un-Georeferenced Images of Mount 
Merapi 

We shared four sets of image collections that show the 
condition of Mount Merapi in four separate locations. Each 
collection contained one photo before the eruption, one photo 
after the eruption and another photo of the current conditions 
at Mount Merapi. All image sets were captured from Google 
Earth without the geo-referenced information.  

  
(a) Before eruption 

 
(b) After eruption 

 
(c) Now 

Figure 2. Satellite imagery on pre-, post-eruption, and 
current conditions captured Mount Merapi volcano from 

Google Earth 

Table 1. Meta information on satellite imagery retrieved from 
Google Earth 

Timeseries 
Top  
Left 

Bottom 
Right Width Height 

Timeseries  

1 
110°26'20.2
9"E 

7°36'11.00
"S 

2080 
px 1400 px 

Timeseries 
2 

110°27'4.46
"E 

7°35'36.57
"S 

2080 
px 1400 px 

Timeseries 
3 

110°26'23.0
1"E 

7°35'36.00
"S 

2080 
px 1400 px 

Timeseries 
4 

110°26'9.00
"E 

7°35'11.82
"S 

2080 
px 1400 px 

 

2.3. Satellite Data 
LAPAN provided two sets of data collections based on two 

locations; Merapi and Garut. LAPAN shared raw data without 
any preprocessing. The list of satellite files is included in Table 
[2]. 

2.4. UAV Data 
BNPB provide the UAV data that they used to collect 

information related to the Garut flash flood and landslides. The 
UAV had two flight plans on 22 September 2016, at 08.11 
GMT+7 and 09.34 GMT+7. Both of the flight plans were located 
at Tarogong Kaler sub-district and took place just one day after 
the disaster. Hence, we do not have UAV data capturing the same 
location before the disaster. Below are the UAV specifications 
that were used to capture the post-landslide images. 
 
UAV Specifications 

Engine (Board) : Skywalker 2013 Wingspan 1880mm 
Servo : 4 pcs EMAX ES08MAII 
Motor : Sunnysky X2820 800KV 
ESC (Electronic 
Speed Controller) 

: Hobbywing Platinum Pro V3 50A 

Propeller : 12 x 6 
Battery : LiPo 4 cells, 5200mAh 
Remote Control : Turnigy 9XR 
Camera : 2.4 GHz 1000 Tx Rx Sony 

 : Sony DSC QX 10 18.2 Megapixel 
GPS : Ublox Lea-6H GPS 
Telemetry : RFDesign/RFD900 
FPV Monitor : Fieldview 777 
Body Protector : BEVRC 
 

3. DATA AND TASK MAPPING 
At the Research Dive, we defined the research questions 

along with the datasets. In addition, participants could use their 
own datasets to answer the research questions.  

Social media data was given to the first and second groups. 
The first group used the image data from social media to classify 
relevant and irrelevant images related to haze events, and further 

(a) (b) 
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develop methods to generate automatic description based on 
the images. The second group used the manually tagged hazy 
images to infer the visibility level. Un-georeferenced time-
series images and satellite imagery of the Mount Merapi 
volcano area from LAPAN were given to the third group, to 
quantify the impact of the volcanic eruption. The UAV data 
and satellite imagery of the Garut area from LAPAN were 
given to the fourth group, to develop risk models and assess 

hazards related to floods and landslides.  
The researchers invited to the Research Dive are computer 

scientists with expertise in image processing, and GIS scientists 
with expertise in remote sensing. The first and second group 
consisted of computer scientists, while the third group was mixed 
(computer scientists and GIS scientists) and the last group 
consisted of GIS scientists.  

 
Table 2. List of satellite imagery data provided by LAPAN 

No Data Type File Name Location 
1 SPOT5 LPN_SP5_292_365_20140616023050_P_ORT Garut 
2 SPOT5 LPN_SP5_292_365_20140616023053_MS_ORT Garut 
3 SPOT5 LPN_SP5_292_365_20140803020426_MS_ORT Garut 
4 SPOT5 LPN_SP5_293_366_20140803020432_MS_ORT Garut 
5 SPOT6 LPN_SP6_201311010236136_ORT Garut 
6 SPOT6 LPN_SP6_201403040241391_ORT Garut 
7 SPOT7 LPN_SP7_201507170245091_ORT Garut 
8 SPOT7 LPN_SP7_201601080247307_ORT Garut 
9 PLEIADES TPP1600215150 Garut 

10 SPOT4 20091116SP4292365S0G2AXI Merapi 
11 SPOT4 20091116SP4292366S0G2AXI Merapi 
12 SPOT4 20091202SP4293365S0G2AMN Merapi 
13 SPOT4 20100901SP4293365S0G2AXI Merapi 
14 SPOT4 20100901SP4293366S0G2AXI Merapi 
15 SPOT4 20101117SP4292365S0G2AMN Merapi 
16 SPOT4 20101117SP4292365S0G2AXI Merapi 
17 SPOT4 20101204SP4293366S0G2AXI Merapi 
18 SPOT4 20110413SP4292366S0G2AXI Merapi 
19 SPOT4 20110629SP4292365S0G2AMN Merapi 
20 SPOT4 20111111SP4293366S0G2AXI Merapi 
21 SPOT4 20120410SP4292365S8G2AXI Merapi 
22 SPOT4 20120410SP4292366S0G2AMN Merapi 
23 SPOT4 20120410SP4292366S0G2AXI Merapi 
24 SPOT4 20120903SP4293365S0G2AXI Merapi 
25 SPOT4 20120903SP4293366S0G2AMN Merapi 
26 SPOT4 20121009SP4292366S0G2AMN Merapi 
27 SPOT4 20121009SP4292366S0G2AXI Merapi 
28 SPOT4 20111111SP4293365S0G2AXI Merapi 
29 SPOT4 20111111SP4293366S0G2AMN Merapi 
30 SPOT4 20111111SP4293365S0G2AMN Merapi 
31 PLEIADES FCGC600328615 Merapi 
32 PLEIADES FCGC600328625 Merapi 
33 PLEIADES FCGC600328630 Merapi 
34 PLEIADES FCGC600328704 Merapi 
35 PLEIADES TPP1600215240 Merapi 
36 PLEIADES TPP1600215381 Merapi 
37 QUICKBIRD 054830488070_01_P045 Merapi 
38 WORLDVIEW2 054830488070_01_P003 Merapi 
39 WORLDVIEW2 054830488070_01_P010 Merapi 
40 WORLDVIEW2 054830488070_01_P018 Merapi 
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ABSTRACT 
Image description for haze images using deep learning method is 
proposed in this article.  The description of haze images which is 
obtained from the social media is a crucial information for the 
government, in order to give an early warning for the people about 
the disaster. There are two main stages applied in this article for 
describing the content of haze image. First, the selection of the 
relevant images (haze images), and second, the description of the 
relevant images. In the first stage, we use histogram of Hue 
channel as the feature, and Random Forest as the classifier.  In the 
second stage, namely the description stage, we apply the deep 
learning method, which consist of Convolution Neural Network 
and Recurrent Neural Network. The images and annotation related 
to haze crisis are trained using deep learning method. The 
encouraging experimental results demonstrate that the proposed 
way to is effective in generating description of images related to 
haze crisis. 

Keywords 
Haze Images, Histogram Images, Image Description, Deep 
Learning, Convolution Neural Network, Recurrent Neural 
Network. 

1. INTRODUCTION 
In this study, image description (or popular term commonly 

used is image captioning) is used to provide a useful description 
and information of the images, in order to help the Internet users 
finding images which match their requirements. Sometimes they 
want to get the exact description of images related to a particular 
crisis, such as images related to haze crisis. In this case, the image 
description process is useful for users such as public and 
government to find information in the form of images related to 
haze crisis, and at the same time, also accurately match the 
keywords they typed in the search engines. Hence, the image 
description allows users to take the images and access them 
quickly without having to filter and sort the images.  

In the image captioning process, we used popular deep 
learning process, namely CNN (Convolution Neural Network) 
combined with RNN (Recurrent Neural Network). In the 
experiment, the training images along with their initial text 
captions are used in the training process to determine the final 
caption or description of the test images.  

2. IMAGE SELECTION 
As the first stage of our proposed method, in this section, we 

briefly describe the process of getting relevant images from 
abundant images. The relevant images are images which contain 
haze-related object or any kind of condition that relate with haze 
incident (we call it as context-haze) as depicted in Figure 1.  
Meanwhile the irrelevant images are images which are not related 
to haze incident at all, as seen in Figure 2.   

    
Figure 1. Relevant Images 

  
Figure 2. Irrelevant Image (non haze Image) 
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In determining what kind of features which will best 
differentiate the relevant images from irrelevant images, we 
conduct histogram analysis to all images. From the analysis, we 
decide that the best features which distinguish relevant images 
from irrelevant images are the intensity and the contrast of the 
images [1], [2]. Therefore, in the selection of relevant and 
irrelevant image, we use histogram of the image and Random 
Forest [3] as the classifier in the classification stage.  Histogram 
of the image is considered as the feature for the selection process, 
since we can distinguish the relevant and irrelevant image from its 
histogram.  The histogram of relevant image tends to assemble in 
only some level of the histogram, meanwhile in the irrelevant 
image, the histogram is distributed in almost all level of the 
histogram. 

    
(a) 

    
(b) 

Figure  3. The histogram of hue value, (a) relevant image 
(haze image) and (b) irrelevant image (non haze image) 

 

3. IMAGE DESCRIPTION 
 

The second stage of our proposed system is describing the 
relevant images obtained from previous stage. We adopt the 
framework of [4] to generate the image description. The model of 
the image description process is depicted in Figure 4.   

As depicted in Figure 4, the description process involved the 
Computer Vision and Natural Language Processing (NLP). CNN 
as an image “encoder”, by first pre-training it for an image 
classification task and using the last hidden layer as an input to the 
RNN decoder that generates sentences [4]. 
The CNN used to extract the representation of images. It has been 
widely used and studied for image tasks, and currently used as 
state-of-the art for object recognition and detection. The 
architecture of CNN that we used is GoogleNet [5]. The 
GoogleNet architecture, the winner of the 2014 ImageNet 
competition, had 22 layers as shown in figure 4. Along with the 
input images, we give some initial text caption giving simple 
description of the input images. The relation of image features and 
the text caption is processed using Recurrent Neural Network 
(RNN), in order to generate the description of the image.  

 
Figure  4. GoogleNet architecture [4] 

.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

haze on the road with 
several vehicles 
Haze on the road 
Vehicles on the road 
…. 

thick haze seen on 
rice paddies field 
Large fields 
… 

 

… … 

Vision Deep Sentence Generation 

… 

Input Images Description Generation 

… 

 

Figure  5. Model of Image Description Process 
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3.1 Recurrent Neural Network (RNN) 
 

Sentence is comprised of sequence of words, therefore we employ 
the RNN. RNN is powerful to generate sentence since in the 
learning process, RNN requires the previous state and the current 
state of data to predict the output of the neural network. RNN 
architecture  that used in this study is Long-Short Term Memory 
(LSTM) net, which gives state-of-the art performance on 
sequence tasks such as translation.  

The core of the LSTM model is a memory cell encoding 
knowledge at every time step of what inputs have been observed 
up to this step. The behavior of the cell is controlled by “gates” – 
layers which are applied multiplicatively and thus can either keep 
a value from the gated layer if the gate is 1 or zero this value if the 
gate is 0. In particular, three gates are being used which control 
whether to forget the current cell value (forget gate), if it should 
read its input (input gate) and whether to output the new cell value 
(output gate) [4] 

 

4. RESULTS 
In the experiment, we use 40 images as training images to 
generate model. Each image has two or three annotations in the 
form of simple sentences. The training parameters that used is 
batch size 100, cnn feature size 1000, embedding size 256, and 
20000 iterations. All images are collected from the social media 
by PulseLab Jakarta. Example of the images and its annotation is 
shown in Figure 6.   

  
 
 
 

 

 
Figure  6. Haze images and its annotations for training 

process 
 

In the testing phase, we use 4 testing images. These images are 
tested on pretrained model COCO and our trained model.  Table 1 
shows the result of the experiment. 

 
 
 
 
 

Table 1.  Description of the images from pretrained and 
trained model 

Images 
Image Description 
from pretrained 

model 

Image Description 
from trained 

Model 

 
[image-1] 

1. volcano 
2. a large bird is 

sitting on a field 
3. a large white bird is 

parked in the grass 
4. a plane is flying in 

the air 
5. a large bird 

standing on a 
runway with a tree 

6. a large bird 
standing next to a 
large field 

1. haze on the road 
2. haze on the road 
3. haze on the road 
4. haze on the road 
5. haze on the road 

 

[image-2] 

1. a man is riding a 
motorcycle down a 
street 

2. a man riding a 
motorcycle down a 
street 

3. a man is riding a 
skateboard down a 
street 

4. a man sitting on a 
bench in a parking 
lot 

5. a man is riding a 
motorcycle down a 
street 

1. wearing a 
wearing a mask to 
a for victim 

2. several vehicles 
forest road and a 
a for victim of 
haze attack 

3. road with several 
vehicles forest 
vehicles wearing  

4. with several 
vehicles vehicles 
a wearing a mask 
in forest 

 
[image-3] 

1. suspension bridge 
2. a plane is flying 

through a blue sky 
3. a large plane that is 

parked on a runway 
4. a large airplane is 

on the runway 
5. a large airplane is 

flying in the sky 
6. a plane is flying on 

the runway 

1. haze on the road 
2. haze on the road 
3. haze on the road 
4. haze on the road 
5. haze on the road 

 

[image-4] 

1. mask 
2. a man holding a red 

and a black teddy 
bear 

3. a man is holding a 
toothbrush to a man 

4. a man is holding a 
white and a kite 

5. a man in a 
bathroom with a 
skateboard 

6. a man holding a 
white and white 
umbrella 

1. haze on the road 
2. haze on the road 
3. haze on the road 
4. haze on the road 
5. haze on the road 

with several 
vehicles 

 

The description of the image obtained from COCO’s pretrained 
model shows in the second column of the Table 1.  As shown in 

1. Thick haze covers the 
lake with a bridge 

2. Haze on a lake 
3. Haze covers a lake with 

a bridge 

1. Thick haze on the road 
with several vehicles 

2. Haze covers the road 
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Table 1, the description is not well suited with the content of the 
images.  For example, one of the descriptions of the image-3 is ‘a 
plane is flying through a blue sky’ and ‘a large plane is on the 
runway’.  The image itself looks like a runway, but in this context, 
this image is about the haze.  The result of the same image which 
is fed into the trained model (using 40 training images) is ‘haze on 
the road’.  The description is achieved since the model is trained 
with the image and annotation related to haze crisis as in Figure 6.  
Unfortunately, the obtained description is not well structured as 
seen in the description of image-2, ‘wearing a wearing a mask to a 
for victim’ or ‘several vehicles forest road and a a for victim of 
haze attack’.  More training images and annotation are required to 
get a better model. 

 

5. CONCLUSION 
The description of images that are related to haze crisis is 
explained in this article. Firstly, the images are classified into 
relevant-images and not-relevant-images using histogram of Hue 
channel as the feature and random forest as classifier. Afterwards, 
the deep learning method is applied to generate the description of 
the image. However, the generated description is not well 
structured since only a few images and annotation are trained in 
the model. In the further work, we plan to fine tuning the model 
and use more images and add some annotations along with each 
image. 
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ABSTRACT 
In this paper, we provide a brief survey of methods dealing with 
visibility level of hazy images. The methods is divided into two 
categories: single-image approach and learning-based approach. 
The survey begins with discussing single image approach. This 
approach is represented by visibility metric based on Contrast-to-
noise ratio (CNR) and similarity index between hazy image and 
its dehazing image. This is followed by a survey of learning-based 
approach. We describe two contrast approaches, that is: (1) based 
on theoritical foundation of transmission light, combining with the 
depth image using new deep learning method, (2) based on black-
box method by employing convolutional neural networks (CNN) 
on hazy images and their visual evaluation.  We also provide 
experiments of the representative methods based on social media 
dataset and comparing the results to visual evaluation of the 
dataset. This survey is our first attempt to estimate visibility level 
from social media images. 

Keywords 
Hazy image; visibility level; single image approach; learning 
based approach; social media 

 

1. INTRODUCTION 
Haze Image occur because bad weather conditions such as 

haziness, mist, foggy and smoky. The image quality of outdoor 
scene in the fog and haze weather condition is usually deteriorated 
by the scattering of a light before reaching the camera due to these 
large quantities of suspended particles (e.g. fog, haze, smoke, 
impurities) present in the atmosphere [1]. The presence of haze in 
the atmosphere degrades the quality of images captured by visible 
camera sensors. The removal of haze, called dehazing, is typically 
performed under the physical degradation model, which 
necessitates a solution of an ill-posed inverse problem [2]. 
Therefore, improving the technique of image haze removal will 
benefit many image understanding and computer vision 
applications such as aerial imagery [3]. 

We divide the methods to solve the visibility level of hazy 
image into two categories. First method is only based on single-
image, that visibility metric and similarity index. Visibility metric 
produce a metric based on Contrast-to-noise ratio (CNR). This 
metric is based on the computation of computation of the 
standard-deviation image and can be used to judge which dehaze 
method is better than another one, since it provides a quantitative 
metric for haze images. The visibility metric is proposed for 
judging which dehaze method is better [4]. The similarity index is 
a method for predicting the perceived quality of digital television 
and cinematic pictures, as well as other kinds of digital images 
and videos. This index, called as structural similarity (SSIM) [5], 
is used for measuring the similarity between two images. In here, 
we compare the original hazy image to dehazing image using 
SSIM to estimate the visibility level of hazy image. 

Second approach is based on learning paradigm. Haze 
removal is actually a difficult task because fog depends on the 
unknown scene depth map information. Based physical 
observation and theory, fog effect is the result of light 
transmission and distance between camera and object. Hence 
removal of fog requires the estimation of airlight map [1]. 
Furthermore, Jian Sun et al [2] found that there are dark pixels 
whose intensity values are very close to zero for at least one color 
channel within an image patch, called as dark channel. 
Approximation to zero for the pixel value of the dark channel is 
called the DCP [4]. The dark channel prior is based on the 
statistics of haze-free outdoor images. Combining a haze imaging 
model and a soft matting interpolation method, we can recover a 
hi-quality haze-free image. By using a transmission matrix 
generated from dark channel prior algorithm [2], and the depth 
map from new Deep Convolutional Neural Fields (DCNF) method 
[7], haze level score can be computed by combining the 
transmission matrix and depth map. Depth estimation is estimate 
depths from single monocular images [7]. We consider the 
transmission matrix as the perceived depth of hazy photos, which 
is a combination of actual depth and haze effects. Therefore, by 
ruling out the actual depth factor, we can isolate the haze effects 
from the transmission matrix, which is used to estimate the haze 
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level [5]. Recently, there is evidence that the black-box approach 
using deep convolutional neural networks (CNN) are setting new 
records for various vision applications. To consider this black-box 
approach, we also create convolutional neural networks (CNN) 
based on hazy images and their visual evaluation.   

We propose visibility metric, similarity index, theorical 
approach based on transmission and depth map and black-box 
approach based on CNN. The experiment will compare the results 
these four approaches. 

2. SINGLE IMAGE APPROACH 
In single image-based approach, we infer the haze visibility level 
only by one image through image processing techniques, such as 
visibility metric and image similarity index which explain in 
detail in next subsection. 

2.1 Visibility Metric  
The visibility metric is based on the computation of the 

standard-deviation image and can be used to judge which dehaze 
method is better than another one, since it provides a quantitative 
metric for haze images. This visibility metric is calculated by 
using Contrast-to-Noise Ratio (CNR) [5] of noise image estimated 
by Gaussian kernel. Contrast-to-noise ratio (CNR) is a measure 
used to determine image quality. CNR is similar to the metric, 
signal-to-noise ratio (SNR), but subtracts off a term before taking 
the ratio. This is important when there is a significant bias in an 
image, for example in hazy image which the features of the image 
are washed out by the haze. Thus this image may have a high 
SNR metric, but will have a low CNR metric. We experiment 
with the visibility metric from Zhengguo [4]. 

2.2 Stuctural Similarity Index  
The structural similarity (SSIM) index [5] is a method for 

predicting the perceived quality of digital television and cinematic 
pictures, as well as other kinds of digital images and videos. It 
was first developed in the Laboratory for Image and Video 
Engineering (LIVE) at The University of Texas at Austin and in 
subsequent collaboration with New York University. SSIM is 
used for measuring the similarity between two images. The SSIM 
index is a full reference metric; in other words, the measurement 
or prediction of image quality is based on an initial uncompressed 
or distortion-free image as reference. SSIM is designed to 
improve on traditional methods such as peak signal-to-noise ratio 
(PSNR) and mean squared error (MSE), which have proven to be 
inconsistent with human visual perception.  

To estimate the visibility level of hazy image, we compare 
the original hazy image to dehazing image using SSIM. In order 
to utilize SSIM, one renown image dehazing method, called as 
multi-scale fusion algorithm [9], is used to do haze removal  

2.2.1 Single Image Dehazing based on Multi-scale 
Fusion 

Haze is an atmospheric phenomenon that significantly 
degrades the visibility of outdoor scenes. This is mainly due to the 
atmosphere particles that absorb and scatter the light. For our 
experiment, we used muti-scale fusion algorithm for removing 
have in an image. This fusion-based strategy works by applying a 
white balance and a contrast enhancing to two original hazy image 
inputs.To blend effectively the information of the derived inputs 
to preserve the regions with good visibility, we filter their 
important features by computing three measures (weight maps): 
luminance, chromaticity, and saliency (see Figure 1). To minimize 
artifacts introduced by the weight maps, it is designed in a 

multiscale approach, using a Laplacian pyramid representation. 
The implementation of multi-scale fusion algorithm is appropriate 
for real-time applications [10]. 

  
Figure 1. Multi-Scale Fusion Algorithm 

The below procedure [11] is foundation of the multi-scale 
fusion algorithm, that is: 
1) Derive two input images from the original input with the aim 

of recovering the visibility for every region of the scene in at 
least one of them. a) First input will be obtained by applying 
white balancing. b) Second input will be obtained by 
applying contrast enhancement technique. 

2) Compute 3 weight maps such as luminance, chromaticity and 
saliency and weight the derived inputs by 3 normalized 
weight maps.  

3) Apply multi-scale fusion, utilizing Laplacian pyramid 
delegation of inputs blended along with Gaussian pyramids 
of normalized weights to obtain the haze free image.  

4) Apply Unsharp Masking method (USM) for image dehazing 
on original hazy input image to obtain the haze free image.  

5) Compare the results of single image dehazing using multi-
scale fusion method with Unsharp Masking method of single 
image dehazing to prove the efficiency of Unsharp Masking 
method. 

3. LEARNING-BASED APPROACH 
In contrast to single image approach, learning-based approach 
envoy a model learned from many images to help inferring the 
haze visibility. In here, we employ two contrast approaches, that 
is: (1) based on theoritical foundation of transmission light, 
combining with the depth image using new deep learning method, 
(2) based on black-box method by employing deep learning on 
hazy images and their visual evaluation. Therefore, there are two 
learning-based approaches that we use in this research: Deep 
Convolutional Neural Fields (DCNF) to learn depth from images 
and Convolutional Neural Network (CNN) to classify haze level 
into two classes of heavy and light haze 

3.1 Depth Map and Transmission Matrix 
The basic idea of this approach is that the haze visibility can 

be inferred by computing the depth of the images and the 
transmission matrix generated from a haze removal algorithm. In 
paper [8], Li et al proposed a framework to estimate haze level 
from a photo by using the Dark Channel Prior (DCP) [2] to 
estimate the transmission matrix and the deep convolutional 
neural fields (DCNF) [7] to estimate the depth map. By 
combining this information, they select from a combination of 
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transformation and pooling functions to estimate the haze level. 
Figure 2 shows the proposed framework of [8]. 

 

 
Figure 2. The proposed framework of [8] to estimate the haze 

level from photos  
The DCNF is proposed by [7] to estimate depth information 

given a single monocular image. The model combine the strength 
of convolutional neural network (CNN) and conditional random 
fields (CNF) to predict the depths. Experimental results from [7] 
shows improved accuracy on various dataset and other baseline 
methods. Figure 3 below shows the illustration of the DCNF 
model. For the DCNF, we use the source code and learned model 
provided by the authors1. 

 

 
Figure 3. Deep Convolutional Neural Fields (DCNF) model [7] 

Our approach is quite similar to [8], but we choose to use 
following equation to estimate the haze level from the estimated 
depth map and transmission matrix: 

! = median log , -
. -  (1) 

where k denotes the haze level, t(x) is the transmission matrix, and 
d(x) is the depth map. Our choice of transformation and pooling 
function are due to the time and computation constraint. 

3.2 Convolutional Neural Network 
Convolutional Neural Network (CNN) was another approach 

we experimented on. Nowadays, CNN has been arguably the best 
image classifier since Krizhevsky, et al. won the ImageNet object 
classification in 2012 using deep CNN [12]. CNN is basically a 
feed-forward neural network but with a convolutional layer for the 
purpose of learning the best representation of the images. Early 
implementation of CNN, widely known as LeNet-5 [13], applied 
by several banks to recognize handwritten digits on cheques. 

 
                                                                    
1 https://bitbucket.org/fayao/dcnf-fcsp 

 
Figure 4. Architecture of AlexNet [12] 

Figure 4 shows the architecture of Krizhevsky’s deep CNN, 
widely known as AlexNet, that won the ImageNet challenge on 
2012. The networks consist of 5 convolutional layers, followed by 
3 layers of fully-connected networks. On the first, second, and 
fifth convolutional layers, a max-pooling layer is applied to 
summarize the outputs of adjacent neurons in the same layer [12]. 
In addition to that, it applies the ReLU activation functions to the 
output of every convolutional layer. Finally, the last layer is a 
softmax which produces a distribution over the 1000 class labels. 
Moreover, a dropout regularization is used in the first two fully-
connected layers to reduce overfitting. The AlexNet model is 
trained using Stochastic Gradient Descent (SGD) with a batch size 
of 128, momentum 0.9, and weight decay of 0.0005. 

We implement our CNN to classify hazy images into two 
classes of heavy haze and light haze using Keras and Python. Our 
network consists of 6 layers, of which 3 layers are the 
convolutional layers and 3 layers are the fully-connected. We use 
max-pooling of size 2 x 2, ReLU activation on each convolutional 
layers, and a dropout regularization on the first and second fully-
connected layers. The output of the last layer is fed to a sigmoid 
function. We also train the network using SGD with a batch size 
of 32 and 100 epoch. Furthermore, image augmentations are 
applied to each training images, which rotate, translate, rescale, 
zoom, and horizontally flip the images to reduce overfitting. The 
augmentations are performed using Keras ImageDataGenerator 
library. Figure 5 below illustrates the configuration of our CNN 
model. 

 
Figure 5. Architecture of our CNN model to classify haze level  

 

4. EXPERIMENT RESULTS  
4.1 Datasets 
For CNN, we manually classify the data from social media 
provided by Pulse Lab Jakarta into two classes of haze level: 
heavy and light. We obtain 300 images for training (191 images 
for heavy haze and 109 images for light haze) and 57 images for 
testing. Furthermore, we test the CNN model with 5 additional 
images with higher resolution. Since the social media images 
where the dataset comes from are heavily filtered i.e. Instagram 
filters, we need to test the robustness of the model using non-
social media images. These additional images are retrieved from 
simple Google search of haze images. 

4.2 Experiments on Single Image Approach 
Visibility metric (VM) estimate how far visibility level based 

on single image. Thus lower VM should represent thicker haze.  
The result of VM on Pulse Lab hazy images dataset can be seen in 
Figure 7 below. VM is only suitable to compare the same outdoor 

Input	
Image 3	x	(Conv	+	ReLU	+	POOL) 3	x	Fully-Connected Output:	Haze	

Classification
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images with different haze level, so VM is not too reliable in 
estimating visibility level of many unrelated outdoor images taken 
from social media. On the other hand, structural similarity (SSIM) 
index is based on comparison of original hazy image and its 
dehazing image. Therefore, SSIM is depended on the dehazing 
image algorithm. For our experiment, we choose recent multi-
scale fusion algorithm [9]. Because SSIM essentially measure 
similarity distance, then larger SSIM should represent thicker 
haze. The result of SSIM on Pulse Lab hazy images dataset can be 
seen in Figure 7 below. 

4.3 Experiments on Learning-based 
Approach 

The result of running DCNF on Pulse Lab hazy images 
dataset can be seen in Figure 6 below. The heat map should be 
corresponding to the distance between the objects on the images 
and the camera. As we can see from the figure, the depth map has 
troubled inferring the depth of the sky and heavy haze-covered 
objects. Calculating haze level k using Eq. 1 gives us results 
shown in Figure 7. The transmission matrices t(x) used in this 
approach come from Dark Prior approach [2]. The larger value of 
k should mean the haze is heavier, though there are some 
inaccuracies. For example, for Figure 7 (c), the value of k is larger 
than 7 (d), in spite of the heavier haze level that can be seen 
visually. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Result of DCNF on Pulse Lab dataset. Images pair 
(a)-(b) and (c)-(d) show the original images and the 

corresponding depth map. 
 

 
VM=31.7657 
SSIM=0.4141  
k = 0.022964 

(a) 

 
VM=28.4074 
SSIM=0.6229  
k = 0.027969 

(b) 

 
VM=50.2235 
SSIM=0.6042  
k = 0.031128 

(c) 

 

 
VM= 31.2852 
SSIM= 0.7515 
k = 0.029282 

(d) 

 
VM=41.2091 
SSIM= 0.7964 
k = 0.032166 

(e) 

 
VM= 21.0301 
SSIM=0.5256 
k = 0.04007 

(f) 
Figure 7. Estimated haze level SSIM, k using DCNF and 

transmission matrix. Larger SSIM and k represent thicker 
haze, but lower VM should represent thicker haze 

 
Figure 8 below shows the classification of the 5 additional 

high-resolution images using CNN model, trained on 300 social 
media images provided by Pulse Lab Jakarta. The CNN model 
correctly classifies the heavy haze images, illustrated in Figure 8 
(d) and (e), although (c) can be argued as light or heavy haze. It 
can be concluded that the CNN specifically recognize the heavy 
haze images from the visibility level of objects in an image. For 
the Pulse Lab dataset, we get around 0.75 accuracy though the 
training epoch hasn’t really converged due to the time constraints. 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

Figure 8. CNN classification result of the 5 additional images. 
Images (a)-(c) are classified as light haze, while images (d) and 

(e) are correctly classified as heavy haze. 
 
In this study, we have evaluated several method for estimating 
visibility level that is: visibility metric (VM), structural similarity 
(SSIM), the depth map + dark channel prior (DCNF+DCP), and 
convolotional neural network (CNN). To make brief comclusion, 
we calculated Spearman correlation index like in [8] based on the 
experiment results and human expert evaluation of Pulse Lab hazy 
images dataset. Unfortunately, CNN classification approach does 
not give any value to represent visibility level, so we can not 
calculate its correlation index.  
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Table 1. Spearman correlation coefficients (%) performance 

VM SSIM DCNF + DCP CNN 

-0.29 -0.08 0.66 - 
 
Furthermore in our short time experiment, we managed to train 6 
layers of CNN and got the 75% classification accuracy which 
looks so promising. In this training, the CNN model hasn’t 
converged well. Yet, validation on additional 5 images with 
higher resolution gives arguably good results. The 
hyperparameters of the CNN can also be fine-tuned more i.e. by 
choosing better layer configuration. Furthermore, mean 
normalization can be used for the input images, so hopefully, the 
loss functions can converge more quickly and we could get the 
best model to predict the haze level from images. The 
hyperparameters of the CNN can also be fine-tuned more i.e. by 
choosing better layer configuration. Furthermore, mean 
normalization can be used for the input images, so hopefully, the 
loss functions can converge more quickly and we could get the 
best model to predict the haze level from images. 
 

5. CONCLUSION 
We managed to experiment on several approaches to 

estimate visibility level in the restricted time. Based on correlation 
coefficient (see Table 1), the DCNF + DCP approach gives most 
promising result. It’s correlation comparing to human expert 
evaluation reaches 66%,  but there are still some inaccuracies. We 
argue that the problem is on the quality of depth map produced by 
the DCNF. Due to the unavailability of ground truth depth map 
for Pulse Lab dataset, we cannot train the DCNF to predict the 
depth from the provided dataset. Moreover, the dataset contains 
various filtered processing and low-resolution images, that the 
visibility level model is incorrectly estimated. The DCNF should 
be trained on social media images i.e. Pulse Lab dataset to be able 
to model the variability of image resolution and quality. The 
problem is the depth information of the dataset is not readily 
available. The other approaches (VM, SSIM) seems only suitable 
for just well-behaved image dataset, and not to fit for ill-behaved 
social media image dataset. 
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ABSTRACT 
In this research, we try to quantify the impact of a volcano 
eruption using spatial data and time-series images captured from 
satellite imagery data. We divide the task into two parts. First, a 
macro analysis approach to prioritize area using spatial data. 
Second, we quantify the number of damage and recovery part 
using image processing approach. By using the spatial data, we 
are able to detect the distribution of the impact of the eruption as 
well as areas that have been recovered after the eruption on a 
broad scale and by using the image processing approach we are 
able to identify the land-use changes as well as quantify the 
number of damage such as the sand river expansion and the 
number of destroyed and recovered building.   

Keywords 
Change detection; eruption; image processing, spatial data 

1. BACKGROUND 
Merapi volcano (Central Java, Indonesia) is one of the 

world's most active and dangerous volcanoes. It contains an active 
lava dome which regularly produces pyroclastic flows. In late 
October and early November 2010, the mount Merapi's eruption. 
This disaster caused 9 villages are destroyed and over 350.000 
people were evacuated. The volcano eruption is different from 
other natural disasters because it was in areas remain. Therefore, 
to determine the impact of a wide range of volcanic eruptions can 
be done using remote sensing applications. 

Remote sensing can monitor the volcano in the most remote 
areas. The ability to collect data directly from satellites today has 
increased the timely study of volcanic eruptions. By using remote 
sensing, it is possible to measure the effects of volcanic eruptions 
on the surface (Fernández L, Álvarez G, Salinas R., 2012). Ortiz 
(1996) has conducted studies to prove the multi deformation pre-
eruption disorders, post-eruptive and assess the impact of the 
eruption. However, the remote sensor depends on the bandwidth 
and radiometric resolutions are not capable of detecting this 
change in surface or, in other words, change the terrain texture 
(Haralick R, Shanmugam K, Dinstein I., 1973). 

In this research, we try to quantify the impact of a volcano 
eruption by investigate the landsat use. According to authorities, 
the merapi area can be classified into several classes such as 
forest, paddy field, livestocks, housing, sand river, open area. In 
this research the classification class is selected by combining 
similar area into same class. 

Four main class was selected for this research, such as; 

1) Vegetation, includes forest and paddy field 
2) Building, includes the livestocks and housing 
3) Sand River, and 
4) Open area 

We select two main tracks for this research such as: 

1) Macro analysis approach that prioritize impacted area by 
looking at the Spatial data. This tracks aims to give an 
information to authority to take action immediately during 
the disaster 

2) Detail analysis to quantify impact using image processing 
approach. This tracks aims to give an information to 
authority about the land-use changes in number such as the 
area and number of damaged building. By implementing the 
same approach for the data years after the eruption, this 
method is also can be used to quantify the recovery area.  

2. RELATED WORK 
In the event of a natural disaster, remote sensing is a valuable 

source of spatial information and its utility has been proven on 
many occasions around the world. However, there are many 
different types of hazards experienced worldwide on an annual 
basis and their remote sensing solutions are equally varied (Joyce 
et al. 2009). Jiménez-Escalona, Granados, & Realmuto (2011) use 
satellite MODIS images as tools for monitoring the volcano 
activities emissions. From This study, it was possible to determine 
three cases related to volcanic ashes. The three of classes are 1) 
follow up of volcanic ash and gases transported by wind, 2) 
calculation of ash-cloud residence time in the atmosphere, 3) 
effects of shearing winds during the ascent of an ash plume. 
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Moreover, SPOT XS and Panchromatic images is used 
jointly in order to map the lava flows of the Nevado Sabancaya 
volcano (southern Peru) (Legeley-Padovani et al. 1997). The 
unsupervised multispectral clustering applied to the XS image and 
some specific methods of image analysis using mathematical 
morphology and convolution filtering applied to the Panchromatic 
image for produce of map impact of lava volcano. The resulting is 
allowed to identify flows and the two main morphological 
features of the flow areas i.e. lava reliefs and flow lines. 

Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) is an advanced multispectral imager that 
was launched on the NASA spacecraft, satellites in Earth 
Observing System (EOS) TERRA named in December 1999. 
ASTER covers a wide spectral region with 14 channels consisting 
of three sensors. The sensor is VNIR (Visible and Near Infrared) 
consists of 3 channels, SWIR (Short Wave Infrared) consists of 6 
lines and TIR (Thermal Infrared) consisting of 5 channel. For 
VNIR channel has a spatial resolution of 15 m, SWIR has a 
spatial resolution of 30 m and TIR has a spatial resolution of 90 
m, each ASTER image covers an area of 60 x 60 km (Abrams et 
al., 2002). 

Volcano hazards monitoring, geology and soil mapping are 
specific applications for which ASTER was developed. The easy 
availability, low cost and unique combination of multispectral and 
3D capabilities at 15m resolution are the main advantages of 
ASTER for volcano study (Kervyn et al, 2007). 

Wiart et al. (2000) proposed image processing techniques 
were tested i.e. principal component analysis (PCA) and optical-
SAR for estimate the volumes of lava flows erupted and the 
timing of explosive and effusive activity of Dubbi volcano. SAR 
imagery revealed old lava flows buried below tephra deposits, 
emphasizing the ground penetrating property of the L-band (HH 
polarization). Two scenarios are identified as a bimodal basaltic-
trachytic eruption, with a minimum volume of 1.2 km3 of 
hawaiite lava and a minimum area of 70 km2 of trachytic pumice; 
it represents the largest known historic eruption in the Afar 
triangle. The interpretation obtained from satellite imagery was 
cross-checked with sparse historical testimonies and available 
ground-truth data. 

Walter et al. (2013) present the results from an analysis of 
nighttime time-lapse infrared images and compare these data with 
local seismic amplitude recordings. Images taken before and after 
the explosions reveal the location of the hot dome to be subject to 
significant and systematic lateral pixel offsets. Therefore, the 
analysis of the infrared image correlation suggests the occurrence 
of aseismic dome-deformation episodes, thereby challenging the 
current understanding of dome growth and/or the appropriateness 
of commonly used volcano surveillance techniques. 

3. METHOD AND RESULT 
3.1 Analysis for Georeferenced Imagery 

The image data used are ASTER Imagery which freely 
available and time series from the AVA (ASTER Volcano 
Archive). This ASTER image given in HDF format and at the 
L1B level by the number of scene as much as 8 consisting of 3 
VNIR (Visible Near Infra Red) channel and 5 TIR (Thermal Infra 
Red) channel. In this study, three images used with the time of 
acquisition is before the eruption in 2009, when the eruption 
occurred in 2010 and after the eruption in 2012. Particularly in 
this study, we used only VNIR channel of ASTER Image. 

 
Figure 1. Multi-Scale Fusion Algorithm 

3.2 ASTER Image Preprocessing 
In the utilization of ASTER image, pre-processing is 

required to obtain surface reflectance values. This value is derived 
from the conversion of DN by applying some of the parameters 
that exist in the metadata. The parameters available in the 
metadata includes the time of acquisition, the conversion 
coefficient value of each channel, and angle of azimuth and angle 
of solar radiation. This parameter to be a reference in the 
preprocessing stage. 

On the stage of the conversion DN to radiance value, the 
equation used is advanced by Abrams, 2000 Lλ = (DN - 1) × Unit 
Conversion Coefficient. The following is a table of unit 
conversion coefficient by Abrams, 2000. 

Table 1. ASTER unit conversion coefficient by Abrams, 2000 

 
The conversion produces radiance values from VNIR Band 

of ASTER image and we have to convert this radiance to 
reflectance value. To conduct this stage, we need the information 
of acquisition time to determine the Earth-Sun distance. The 
Earth-Sun distance is derived by taking the Calendar date of the 
scene and converting it to a Julian date and then calculating the 
distance. The following are part of Earth-Sun distance table. 

Table 2. Earth – Sun Distance in Astronomical Units 
(Chander and others, 2003) 
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Moreover, there is an attribute called "SOLARDIRECTION" 
in the ProductMetadata.0 group in the embedded HDF metadata.  
It defines the sun direction as seen from the scene center.  For 
example: 

OBJECT  = SOLARDIRECTION 
NUM_VAL = 2 
VALUE  = (177.154016, 32.061355) 
END_OBJECT  = SOLARDIRECTION 

The second value (32.061355) is the Elevation angle in 
degrees (values can range between <= -90.0 to <= 90.0). 

The last parameter is the value of irradiance on ASTER 
image of each channel. This value is obtained from Thome and 
others, 1998 as shown in the table below,  

Table 3. ASTER Solar Exoatmospheric Solar Irradiances 
(modified from Thome and others, 1998) 

 
by applying all the parameters and attributes from the metadata on 
each ASTER image, then the value of radiance imposed following 
equation: 

Pλ=(π×L_λ×d^2 )/(Irradiance×sin(π×sun elevation angle/180) 

whole VNIR band from ASTER image must be converted into the 
reflectance values. By obtaining the reflectance value, the last 
stage of preprocessing is correcting the area of cloud cover and 
shade. 

To get a formula that can detect the reflectance values of 
clouds and shadows on ASTER image automatically, then the 
histogram analysis performed on each band. Based on the analysis 
histogram, obtained that the band two (2) able to detect the area of 
cloud reflectance. The formula is Cloud ≥ mean of Band2 +2stdev 
and this formula applied to be the threshold values for the cloud. 
The whole area which covered by clouds corrected by changing 
its reflectance value become NoData. 

3.3 Classify the Image Into Classes from 
Histogram Analysis 

To classify the reflectance values that have been corrected in 
the previous process, the histogram analysis is required to obtain a 
threshold value from each reflectance representing several classes 
of vegetation, lava or laharic flows (volcanic eruption product), 

buildings and open areas. The following are some of the steps 
taken in the classification of these classes: 

1) Using vegetation index method in separating between the 
reflectance of vegetation (!"#) or non vegetation ($%"#). 
The threshold values used to separate vegetation and non 
vegetation is based on the equation $&!'	 = 	 *+,	-	,./*+,	0	,./ and 
!"#	 = 	$&!'	 + 	234"% alse is $%"#. 

 
Figure 2. Vegetation Coverage from ASTER datasets 

2) To obtain the expected area as lava or rock outcrops, then 
carried back to the $%"#	histogram analysis so that the 
resulting formula as follows: 

56%6	 = 	 (($'8 < (:"6; − 234"%)	&	8?& > (:"6; − 234"%)) 
	||	(($'8 < (:"6; − 234"%)	&	$%"# < (:"6; − 2234"%)) 
the results of the threshold value of the formula is expected 
as the area of outcrop of volcanic rock or lava while beyond 
that value is assumed as an open area including buildings. 

3) Across the threshold value of the histogram analysis 
classified into a class of its own with a unique pixel value 
created. The value of the cloud cover is NoData, vegetation 
is 2, the open area is 3 and the lava is 5. 

Based on the results of the application of the formula and the 
classification of the three ASTER datasets then acquired land 
cover classes as shown by the following figure: 

 

Figure 3. Land cover classification ASTER image before 
(2009), when (2010) and after the eruption (2012) 

 

3.4 Quantify the Impact of Eruption 
To identify the impact of the eruption on this research can 

be done by performing numerical calculations on land cover data 
that has been given a unique pixel value. Changes in land cover 
due to volcanic eruption may be identified by several factors such 
as changes in the vegetation into the open area. These changes can 
be demonstrated by detection of changes shown by the following 
figure. 

 
Figure 4. Change detection result of ASTER before and 
during eruption as well as during and after the eruption 
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In addition to the change detection method, other numerical 
method used is by subtracting the data before the eruption to the 
data after the eruption in order to obtain the classification of 
negative values is assumed to be the region / area affected by 
volcanic or by humans. The results of the analysis of the impact of 
the eruption is shown by the following figure. 

 
Figure 5. Detection of the impact of eruption based on ASTER 

data before to the when eruption 
 

Red and yellow areas are the areas affected by volcanic 
eruptions and centered around the central zone of the crater. 
Nonetheless, some correction factor needs to be done especially in 
the areas far from the central zone which also gives a yellow color 
response. It can be caused by factors determining the accuracy 
wrong due to the threshold value is less accurate and also due to 
the reflectance values that are similar, or too distracted. Therefore 
additional correction data is needed such as topography / 
geomorphology of volcanic and correcting the distance from the 
central zone and proximal to the volcanic crater. 

In addition to quantifying the area affected by the volcanic 
eruption, this data can also be used to analyze the areas that have 
been recovered, especially in terms of the recovery of the 
vegetation. By utilizing numerical operations, namely the 
reduction between the current data with the data after the eruption 
eruption resulting in a positive value is assumed to be a change 
from the open area and lava into the vegetation. Areas which is 
positive is defined as an area that has been recovered mainly 
vegetation as shown by the following figure. 

 
Figure 6. Detection area that has been recovered based on 

ASTER data when the eruption to after eruption 
 

Green area shows the change from the open area and lava 
into the vegetation. The condition of this area is located near the 
central zone of volcanic craters indicate areas that have been 
recovered due to the eruption. In addition, the pattern of the 
laharic flow are also visible change with the direction of flow of 
the main river, so it can be estimated that the area of the main 
river channel is still prone to lahars flood. 

3.5 Analysis for Un-Georeferenced 
Imagery 

The images used in this analysis are satellite imagery taken 
by Google. These images are not georeferenced as we screenshot 
the images from Google Map as ordinary image files and thus the 
coordinates information are lost.  The image set consists of three 
images: Before (before eruption happened), After (right after the 
eruption), Now (about 4 years after eruption). 

3.5.1 Land Cover Classification 
Visually we can recognize the four class in the image by 

using their color only, and thus we don’t use other features such 
as texture. The color space that we use is RGB. The classification 
steps are: 

1) Take some sample patch of each class from the images 
2) Calculate the mean RGB for each class as class 

representative (m1, m2, m3, m4) 
3) For each pixel x in the image: 

a. Take n by n neighboring window centered at pixel 
x. We tried taking 3,5,7 or 9 as n, and find that n = 
5 gives best result. 

b. Calculate mx the mean of these neighboring pixel. 
c. Calculate the distance between the mx to (m1, m2, 

m3, m4) using Euclidean distance. 
d. Assign x to class i if the distance between mx and 

mi  are the minimum. 
 

One problem that we encounter when using this method is 
color range similarity between classes, as shown in Figure 1 
where building’s color is similar to sand river (in Before.png). 
Fortunately, the two class have different size.  So in this case, we 
solve the problem by doing two step processing, such as: 

1) Classify building and sand river as same class. 
2) Separate building and sand river by their size. We use 

connected components in this process and define sand river 
as objects whose size is greater than the threshold (25.000 
pixels). 
 

The same problem happens in Now.png, where the color of 
sand river is now similar to open area. We use the same 
processing step and get good results. 



 17 

 
 

Figure 7. Example of our land cover classification by color 
and size. (a) Example of sand river (red) and building 
(yellow), (b) Sand river and building are classified into, (c) 
sand river is separated by its size same class (labeled as black) 

3.5.2 Impact Assessment and Impact in Number 
After classifying the image set (Before, After, Now), we can 

perform several comparison between these images. We compare 
five comparison, as shown in Figure 2. Figure 2a shows the 
impacted area. We define impacted area as those pixels that 
change classes between Before and After, but not those that 
changes into vegetation (because it may happen naturally from 
open area to vegetation due to plant natural growth).  

 
(a) Impacted area right after 

eruption (red) 
(b) Recovered area years 

after eruption (green) 

 
(c) Difference of river path 

before (magenta) and years 
after eruption (white) 

(d) Difference of vegetation 
before and years after 
eruption 

Figure 8. Impact Assessment 

To quantify the number of impact and recovery area,  we 
calculate two main impact caused by a volcano eruption  such as 
a) the sand river expansion and b) number of building before the 
eruption and current situation. Table 1 shows how the sand river 
was expanded after the disaster and Table 2 shows the number of 

building before the eruption and the number of recovered 
building. 

Table 4. Sand River expansion 

Measurement Value 

Number of area after the 
eruption (in pixel) 

4 times before eruption 

Average width expansion after 
the eruption 

4.5 times before the eruption 

Maximum width expansion 
after the eruption 

49 times before the eruption 

Table 5. Number of Recovered Building 

 

4. CONCLUSION 
As has been explained in the previous section, this research 

aims to detect and estimate the changes in the affected areas 
eruption of Mount Merapi in the time series. Through the study of 
the theoretical foundations and the analysis of results obtained 
with different techniques and methodologies that have been 
presented. The result makes it possible to develop algorithms to 
change detection on the surface due to the eruption of events. 
Furthermore, with different scenarios, methodologies have been 
applied may be contributing to the monitoring and investigating 
the possibility of an eruption event if deformation occurs in the 
volcano. Finally, through a process developed and various tests, 
the hypothesis were established at the beginning of this work can 
be considered and developed for similar studies. 
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ABSTRACT 

Flash flood disaster occurred within the City of Garut, West Java, 
Indonesia, on 20th September 2016, which caused many casualties 
and damages. Flood model could be performed to model the 
already-occurring disaster, as well as to depict future events that 
may occur to overcome any potential disasters, where the 
inundation flood model depicted the element at risk. In order to 
assist the analysis for the damages occurred, image mining could 
be used as part of the approach, where online media was utilized as 
well. The image mining resulted information about building 
damages caused by the flood. Afterwards, the physical 
vulnerability (buildings/residents) model could be further 
performed. Finally, the relationship between vulnerability and the 
flood inundation were portrayed. The resulted physical 
vulnerability model showed that larger height of the flood water 
caused higher degree of loss of the building, in which portrayed the 
need for total rebuild of houses as well. Considering available open 
source data and fast data acquisition, the approach showed such 
efficient approaches, where the results could be used in order to 
establish recommendation for building reinforcement, spatial 
planning, or protection wall in flood prone areas within the future 
time. 

Keywords 

Flash flood; flood inundation model; element at risk; building 
damage; image mining; physical vulnerability model 
 
1. INTRODUCTION 
Indonesia always has unique problematic matters in terms of water. 
Apart from drought that happens occasionally in Indonesia, flood 
always has its own attention in the country. Water-related problems 
not only result technical issues, but often impact the major 
economic and social perspectives of the nation. Having complex 
socio-economic problems, weak infrastructure and high population 
density, such conditions show that water-related disasters may 
cause more casualties in Indonesia. In Garut, West Java, Indonesia, 

on the 20th September 2016, flash flood occurred within the area, 
causing many impacts. Having the city to be around 24 kilometers 
from the east part of the forest that maintains the Cikamiri Water 
Spring, Garut lies within Cimanuk Watershed, in which has a total 
area of 3,636 km2. The flood disaster caused death of 34 people, 
where 19 people gone missing. Also, 1,326 people was evacuated 
from the area, in which 2,511 residents were damaged (⅓ of them 
could not be utilized at all) 1. It was said that the disaster was one 
of the worst disaster happening to the city.  
Water is somewhat risky to the society if it is not handled properly, 
especially those related to flood. However, flood events are 
somehow predictable if they are well-calculated, where mitigation 
scenarios could be carried out beforehand, therefore, hydrological 
modeling is significantly important. Hydrological modeling is very 
pertinent in terms of disaster risk, since replicating natural systems 
may portray potential projected situations/impacts for the future 
time. Mentioned by Yoon et al (2014), to prevent water disasters, 
it is essential to develop management models that could support in 
settling upstream with downstream interests. Based on the disaster 
in Garut, the flood model could be performed as well, where further 
studies could be attained, including element at risks and the 
vulnerability of the residents/settlements surrounding the area of 
flood. 
On the other hand, as part of the flood occurred in Garut, online 
media indeed had their own portion in informing the disaster. The 
media includes social media (such as Twitter, Instagram, etc) and 
many Indonesian electronic news. To overcome the problem in 
Garut, online media could be used as one of such approaches to 
depict the level of damages. Overcoming the condition in Garut, to 
depict the flood occurrence as well as to prevent any other disasters 
within the future time, the integration of both hydrological 
modeling and image mining (from online media) could be one of 
the most potential approaches. Hence, this study will be relevant 
for related stakeholders since it can assist decision making and 
cost–benefit analysis of structural protection measures by assessing 
the potential cost of future events, which can be used as well for 
other types of hazards within the future time. 

_____________________________________________________________________________ 
1 http://news.liputan6.com/read/2613863/journal-hutan-keramat-di-balik-banjir-bandang-garut 
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2. METHODOLOGY 
Initially, the distribution of frequency was statistically identified to 
obtain the recurrence interval or return period, where the 
geomorphological condition of the catchment area was also carried 
out. Afterwards, as soon as all hydrological parameters were 
attained, flood inundation modeling could be performed. The result 
of the flood model were then used to show the element at risk, 
where potential building damages were observed, based on the 
integration of both risk and actual damages caused, derived from 
image mining, available via online media. Finally, the correlation 
between the resulted damages and resulted model could be 
depicted. The resulted model includes both velocity and depth 
value of the flood inundation.  

 

 

 

 

 

 

 
Figure 1. Methodology flow chart 

2.1 Watershed Delineation, Frequency 
Distribution, and Design-storm Peak 
Discharge 

The watershed delineation work was done based on the topography 
data provided by The Indonesian Geospatial Agency (Badan 
Informasi Geospasial), with contour data of 1:25,000. On the other 
hand, the rainfall data was derived from Garut’s local Indonesian 
Agency for Meteorological, Climatological and Geophysics 
(Badan Meteorologi, Klimatologi, dan Geofisika). The rainfall data 
used for this study was 10 years, starting from 2002 to 2011. The 
frequency distribution was statistically calculated as well using the 
Gumbel Method (Al-Mashidani et al, 1978), to gain the peak 
designed precipitation. Afterwards, the design-storm peak 
discharge was further calculated using the rational equation 
(Kuichling, 1889). The values was then ready to be inputted to 
further perform the flood inundation model.  

2.2 Flood Inundation Modeling 
Flood inundation modeling was done using Hydrologic 
Engineering Center – River Analysis System (HEC-RAS) software 
developed by the U.S. Army Corps of Engineers (USACE). As part 
of the modeling process, the determination of geometric parameters 
for the system was carried out using HEC-GeoRAS software. The 
software enables users to perform the geometry of the specified 
stream based on its original topography. Within the process, 
parameters such as cross sections, channel banks, stream lines, as 
well as hydraulic parameters were calculated and were ready to be 
imported to HEC-RAS. Afterwards, in HEC-RAS, all related 
hydrological data (100-year return period) was then inputted to 
perform flow analysis, in which resulted the flood model 
inundation.   

2.3 Image Mining 
Internet, especially website and social media such as Facebook, 
Instagram and Twitter has accumulated a huge number of images 
contributed by their users. Filtering and downloading images 

automatically from internet using Application Programming 
Interface (API) from each of these social media and Google images 
or custom search API are available. Furthermore, with regard to 
disaster (demonstrating the impact of disaster), the images that can 
be used in this research must have two mandatory information, i.e. 
time and geolocation. 
Mostly all images provided the time information in metadata or 
otherwise automatically or manually extract the time information 
from the posting time, caption of the images or from the text of 
articles are available. Whist for geolocation, a large portion of 
images uploaded to internet contain no geolocation information. 
Basically, the geolocations of images or photos in internet come 
from two sources: 1) With GPS-enabled cameras or gadgets, 
geolocations can be automatically extracted from the images or 
associated with the post in social media; 2) Users can also manually 
geotag photos by dragging a photo to a point on a world map 
interface or specific location name when uploading photos to an 
image sharing service or social media (Bo et al, 2014).  

2.4 Element at Risk 
An essential part in methodologies for the assessment of hazard - 
risks and vulnerabilities of physical and social structures is the 
identification and valuation of an inventory of objects and assets 
exposed to a certain hazard. The risk of an asset or element at risk 
is then expressed in its tendency to get damaged (Douglas, 2007). 
In the framework of the International Strategy for Disaster 
Reduction (ISDR) the term risk is defined as the “probability of 
harmful consequences, or expected losses (deaths, injuries, 
property, livelihoods, economic activity disrupted or environmental 
damage) resulting from interactions between natural or human -
induced hazards and vulnerable conditions” (ISDR, 2004). 

Consequently, risk assessment is based on a methodology to 
evaluate the nature and extent of risk determined by characteristics 
of potential hazards and conditions of vulnerability that could 
potentially harm people, their properties and the environment 
(ISDR, 2004). 

In the evaluation of the risk that a certain element might be affected 
by a natural hazard, the exposure of the element has to be evaluated. 
The term exposure “refers in general to the volume and 
concentration of elements in a given area, and is calculated 
combining population exposure, density of population, built area, 
industrial area, and Government and institutional area” (Villagrán 
de León, 2006). 

Thereby the distribution and characteristics of elements at risk can 
define physical exposure to natural hazards, e.g the susceptibility 
to be affected by natural phenomena: “Elements at risk, an 
inventory of those people or artefacts that are exposed to a hazard”. 

2.5 Building Damages 
The main focus in this study is about the damage to the building 
units as an impact of flash flood. Damage to the building is 
recognized based on the information of the physical condition of 
each unit derived from photo images of buildings of various social 
media such as Facebook, Instagram and Twitter in the period of 
time of the incident and after the occurrence of Garut flash flood. 
The level of building’s damage was based on physical criteria 
damage to buildings published by the Bakornas PB (Bakornas in 
Dept. PU, 2006) and was specially modified for flood damage in 
2012 (Rijal, 2012). 
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Modeling 
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2.6 Physical Vulnerability 
Physical vulnerability is the potential damage defined by physical 
structure (material and construction building) when disaster 
occurred (Ebert et al, 2009). It can also be defined as the degree of 
loss to an element at risk (UNDRO, 1984). The vulnerability 
assessment is important for the development of disaster risk 
reduction strategies. Vulnerability is usually expressed as the value 
from 0 to 1 expressing the degree of loss due to the impact of the 
process. The relationship between vulnerability and the process of 
disaster is often described with vulnerability curve. The curve could 
be a valuable tool for the local authorities because it can assist 
decision making and cost–benefit analysis of structural protection 
measures by assessing the potential cost of future events. This can 
also be used for other types of hazards in the future. The 
vulnerability curve represents the function of the intensity of the 
process and the degree of loss. 

 

3. RESULTS AND DISCUSSIONS 
3.1 Watershed Delineation, Frequency 

Distribution, and Design-storm Peak 
Discharge 

Prior undertaking all related flood modeling work, the 
geomorphological feature of the watershed/catchment area was 
required to be attained by delineating the watershed based on a 
specified downstream point. The delineation of catchment area is 
needed since the area will be specified to those areas that affected 
the downstream area only.  

 
Figure 2. Catchment area with Copong Dam as downstream  

The delineation was based on elevation data (1:25,000 scale) 
provided by the Indonesian Geospatial Agency (Badan Informasi 
Geospasial). The contour data was converted to Digital Elevation 
Model (DEM), and was used as the base for the delineation. For 
this study, the downstream point was Copong Dam, located at 
821606 mE and 9204322 mN. Since the outlet of the catchment 
area was Copong Dam, the catchment area that potentially affected 
the downstream was 471.32 km2. 

Precipitation data was attained from local measurements, provided 
by Garut’s local Indonesian Agency for Meteorological, 
Climatological and Geophysics (Badan Meteorologi, Klimatologi, 
dan Geofisika). The rainfall data used for the analysis was 10 years, 

starting from 2002 to 2011. From such data, as for the frequency 
distribution, the Gumbel Method was used for the analysis. With 
100 return year period, the design rainfall was 228.03 mm. From 
the aforementioned design precipitation, the maximum design-
storm peak discharge was then calculated as well, i.e. 304.14 m3/s.  

3.2 Flood Inundation Modeling 
Based on hydrological parameters gained, the flood model could be 
performed. The establishment of the model used Hydrologic 
Engineering Center – River Analysis System (HEC-RAS). The 
determination of the geometric parameters were based on the DEM 
data carried out previously, assisted by HEC-GeoRAS software. As 
for this analysis, 100-year flood return period (1% annual 
probability) was chosen.  

From the analysis, the distribution depiction for the flood 
inundation was achieved. Based on the model, as results, both depth 
and velocity of the flood model was attained as well.  

 
Figure 3. Flood inundation model results - velocity model (left) 

and depth model (right))  

3.3 Image Mining 
With regard to image mining, in most cases, the number of disaster 
related images that have valid time and geolocation will be very 
small and not representative, therefore manually finding and giving 
geolocation for images related with the disaster is necessary. 
However, giving geolocation for images manually can be very 
difficult and error prone, especially if users are not really familiar 
with the location and only have little information pra and post 
disaster. The workaround for this issue is only looking for special 
landmarks or points of interests which are easily recognizable and 
unambiguous, such as school, hospital, mosque, government 
offices, etc. The steps can be began by finding the specific 
landmark around the disaster site, obtaining the geolocation, and 
afterwards finding the landmark images, or vice versa starting with 
a list of existing landmark images. The point location for each area 
was then inputted to GIS. The results for the image mining were the 
determination of 43 buildings surrounding the area of flood to be 
indicated as damaged (Figure 4), which is further described on 
Section 3.4 and 3.5.  

3.4 Element at Risk 
Based on the previously described methodology, a case-study for 
flood prone areas of the city of Garut was carried out to identify 
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elements at flood risk of the category of essential facilities 
(residents/buildings).  

The identified tags by image mining approach were then extracted 
from the database on a map as point-information to derive a spatial 
representation of the relevant objects. In the last step of our 
methodology, the extracted data can be intersected with hazard 
maps to derive an indication about the exposure of the identified 
elements at risk.  This approach of identifying elements at risk 
could be equal for every hazard.  
Based on image mining approach, in the HEC-RAS model, 
corresponding to the essential facilities, the database of facilities 
for the city boundary of Garut was identified. Our study results 
showed that 43 buildings were damaged with the flash flood in the 
City of Garut (Figure 4). The intersection with a flood-hazard map 
for Garut resulted a list of five classes of the category of ''element 
risk'' exposed to flood-hazard (Table 1). 

 

Figure 4. Element at risk depiction of essential facilities 
(residents/buildings) 

3.5 Building Damages 
Criteria of building damages as a result of flash flood for each level 
of damage can be seen in Table 1. 

Table 1. Physical criteria to identify level of the building 
damage casused by flood 

No Level of Damage Damage Criteria 

1  Collapsed 
 

Buildings are collapsed by flooding, where 
the overall building is buried by flood or 
most structures are damaged (inundated 
>50 cm and > 50 % part of building 
collapsed) 

2 Severely 
Damaged 

The building is still complete, but most of 
the structural components and architectural 
components are damaged (inundated  max 
50 cm) 

3 Moderately 
Damaged 

The building is still complete, but small 
part of the structural components and 
architectural components are damaged 
(inundated > 30 cm) 

4 Slightly Damaged 

The building is still complete, but no 
structural components are damage and only 
architectural components are damaged 
(inundated < 30 cm) 

5 Non Damaged 
The building is still complete, but no 
structural components are damage only 
inundated by flood (inundated < 20 cm) 

Based on physical criteria on Tables 1, images of each building 
identified the extent of the damages. The main problems 
encountered was that most of the images were not complemented 
by location identifiers (coordinates) so that the identification of the 

building was only done to the building which was the city 
landmarks such as hospitals, schools and government offices. City 
landmarks were easily recognizable to obtain the identity of its 
location. The results of the identification of Garut city landmark 
building damage is seen in Table 1 and Figure 5.  

  

  

Figure 5. Images and level of damage classification 

Using coordinate information, each level of building damage can 
be mapped to see the distribution of the damage. Overlay 
distribution of damage map and the expansion of the inundation can 
be analyzed, showing the spatial impact of the flood occurring to 
the building (Figure 6). 

 
Figure 6. Spatial depiction of the damaged residents 

3.6 Physical Vulnerability  
The intensity of the Garut Flash Flood had been done on the basis 
of the flood height and flood velocity. The degree of loss was 
evaluated based on the damage assessment as the impact of flash 
flood. The photographic documentation obtained from image 
mining technique was used in order to assess the damage of the 
building. Following the assessment of flood intensity, the pictures 
showing the damage of each building were analyzed.  The relation 
between the intensity of the flood and the degree of loss for each 
building is plotted in a two dimensional chart (Figure 7 and 8). The 
vulnerability curve shows that the larger the height of the flood 

Collapsed Moderately 

Severely Slightly 
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water, the higher the degree of loss of the building. The curve 
becomes significantly steeper after the intensity of 6 m. The degree 
can also show the need for total rebuild of houses. The needs for 
total rebuild of houses starts with the intensities of 6 m.  

 
Figure 7. Correlation between damage and velocity 

 
Figure 8. Correlation between damage and depth 

The developed vulnerability curve can be applied in the risk 
assessment regarding flash flood events. The information derived 
from vulnerability curve is important for risk management. It could 
be used in order to make recommendation for building 
reinforcement, spatial planning, or protection wall in flood prone 
areas. Possible recommendations for specific objects to reduce their 
vulnerability could include keeping the distance from the river. The 
end users can employ the curve not only to calculate the costs of a 
future damaging event of a specific intensity but also to calculate 
the costs of an event if the position of the building changes. The 
cost-effectiveness of measures strategy including protection 
measures can also be analyzed by using the vulnerability curve. 
Protection measures such as wall can change the intensity of the 
flood on specific building. For example, the intensity of the flood 
on the specific building will be reduced by introducing a protection 
wall in a segment of river bank.  

4. CONCLUSION 
Considering available open source data and fast data acquisition, 
the study showed that that inundation model and image mining is 
one of such efficient approaches to depict the correlation between 

damage level of physical features (buildings/residents) and the 
flood inundation (velocity and depth) of the already-occurring 
flood disaster and potential future events. The resulted physical 
vulnerability model showed that larger height of the flood water 
caused higher degree of loss of the building, where it portrayed the 
need for total rebuild of houses as well. The results could be used 
in order to make recommendations for building reinforcement, 
spatial planning, or protection wall in flood prone areas within the 
future time.  

5. ACKNOWLEDGMENTS 
Huge gratitude for Pulse Lab Jakarta for providing all 

necessary technical and non-technical goods for this study.  

6. REFERENCES 
Al-Mashidani, G., Pande, B. B., Mujda, M. F. (1978) A simple 

version of Gumbel's method for flood estimation / Version 
simplifiée de la méthode de Gumbel pour l'estimation des 
crues, Hydrological Sciences Bulletin, 23:3, 373-380. 

Bo, L., Quan, Y., Gao, C., and Dong, X. (2014) Where your photo 
is taken: Geolocation Prediction for Social Images. Journal 
of the American Society for Information Science and 
Technology (JASIST), Volume 65 Issue 6, pages 1232-1243, 
June 2014. 

Departemen Pekerjaan Umum. (2006) Program Rehabilitasi 
Gempa D.I. Yogyakarta dan Jawa Tengah. 
http://ciptakarya.pu.go.id/dok/gempa/main.htm. Accessed 
on 17 March 2016. 

Douglas, J. (2007) Physical Vulnerability Modelling in Natural 
Hazard Risk Assessment,Natural Hazards and Earth System 
Sciences , 7, 283–288.  

Ebert, A., Kerle, N., and Stein, A. (2008) Urban Social 
Vulnerability Assessment with Physical Proxies and Spatial 
Metrics derived from Air- and Spaceborne Imagery and GIS 
Data. Nat Hazards 48:275-294. 

ISDR (2004) Living with Risk: A global review of disaster 
reduction initiatives. International Strategy for Disaster 
Reduction. Switzerland: United Nations.  

Kuichling, E. (1889). The relation between the rainfall and the 
discharge of sewers in populous districts. Transactions, 
American Society of Civil Engineers 20, 1–56. 

Rijal, S. S. (2012) Analisis Kerusakan Permukiman Akibat Banjir 
Lahar Pasca Erupsi Gunungapi Merapi 2010 Di Sebagian 
Kabupaten Magelang (in Bahasa). Un-Publised Thesis. 

UNDRO (1984) Disaster prevention and mitigation-a compendium 
of current knowledge. Preparedness aspects, vol 11, New 
York 

Villagrán de León, J. C. (2006b) Vulnerability. A Conceptual and 
Methodological Review Studies of the University: Research, 
Counsel, Education -Publication Series of UNI-EHS, 4, 
Bonn, Germany 

Yoon, T., Rhodes, C., Shah, F. A. (2015) Upstream water resource 
management to address downstream pollution concerns: A 
policy framework with application to the Nakdong River 
basin in South Korea, Water Resour. Res., 51, 787–805 

Velocity (m/s)
0 2 4 6 8 10 12

D
am

ag
e 

(%
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Depth (m)
0 2 4 6 8 10 12 14 16 18

D
am

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2



Pulse Lab Jakarta is grateful for the generous support from  
the Department of Foreign Affairs and Trade of the Government of Australia.


